## Worksheet 11

Date: 11/10/2021
Name:

## Linear Congruence and Fermat's Little Theorem

THEOREM 1 (Liner Congruence solutions). The congruence equation

$$
a x \equiv b \quad(\bmod m)
$$

has a solution $x \in \mathbb{Z}$ if and only if $h c f(a, m)$ divides $b$.

1. Solve the following sets of simultaneous congruence's:

$$
x \equiv 1 \quad(\bmod 3), \quad x \equiv 2 \quad(\bmod 5) \quad x \equiv 3 \quad(\bmod 7)
$$

2. What is $\frac{2}{3}$ modulo 5 ?
3. What is $\sqrt{3}$ modulo 7 ?
4. What is $\sqrt{5}$ modulo 11 ?

THEOREM 2 ( Fermat's Little Theorem). Let $p$ be a prime and a an integer relatively prime to $p$. Then,

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

Proof. It is enough to show the following statement holds, $a^{p} \equiv a(\bmod p)$, with the conditions above. This proof is by induction. If $a=1$, then the statement is obviously true. Assume our statement holds for some integer $a$. Recall from the binomial theorem:

$$
(a+1)^{p}=\sum_{i=0}^{p}\binom{p}{i} a^{p-i} 1^{i}
$$

Where the coefficient $\binom{p}{k}$ is given by

$$
\binom{p}{k}=\frac{p!}{(p-k) k!}=\frac{p(p-1) \cdots(p-k+1)}{1(2) \cdots(k)}
$$

We first show $\binom{p}{k} \equiv 0(\bmod p)$ when $1 \leq k \leq p-1$. To see this, note that

$$
k!\binom{p}{k}=p(p-1) \cdots(p-k+1) \equiv 0 \quad(\bmod p) .
$$

But $p$ is a prime so $p \mid k!$ or $p \left\lvert\,\binom{ p}{k}\right.$. But $p \mid k!$ implies $p \mid j$ for some $j$ in $1 \leq j \leq p-1$. Which certainly cannot happen. Hence, $p \left\lvert\,\binom{ p}{k}\right.$ i.e.

$$
\binom{p}{k} \equiv 0 \quad(\bmod p) .
$$

Hence,

$$
(a+1)^{p} \equiv a^{p}+1 \equiv a+1 \quad(\bmod p)
$$

where the right-most congruence uses our inductive assumption.

Remark: The converse of Fermat's Little Theorem is false.

THEOREM 3 (Wilson's Theorem). Let $p$ be an integer greater than one. Then, $p$ is a prime if and only if $(p-1)!\equiv-1(\bmod p)$

Proof. I am not going to have enough time in section to prove this, but the reverse implication is a lot easier. A proof by contradiction should not be to hard.

LEMMA 4. Let $p$ and $q$ be distinct primes and $x \in \mathbb{Z}$. Assume $p$ divides $x$ and $q$ divides $x$. Then pq divides $x$.

Proof. :

1. If $(a, 35)=1$, show that $a^{12} \equiv 1(\bmod 35)$.
2. For the congruence equations below, either find a solution $x \in \mathbb{Z}$ or show that no solutions exists:

$$
x^{2}+x+1 \equiv 0 \quad(\bmod 5)
$$

3. Let $p$ be an odd prime. Then
(a) $1^{p-1}+2^{p-1}+\ldots+(p-1)^{p-1} \equiv-1(\bmod p)$
[Hint: when coming up with a strategy, it helps to pick particular values and then generalize. For example, take $p=3$. How can you solve it? ]
(b) $1^{p}+2^{p}+\ldots+(p-1)^{p} \equiv 0(\bmod p)$
[Hint: when coming up with a strategy, it helps to pick particular values and then generalize. For example, take $p=3$. How can you solve it? ]
